Saturday, 13 January 2018

الأسي الحركة من المتوسط - تجانس عامل


بسيطة مقابل. المتوسطات المتحركة الأسية المتوسطات المتحركة هي أكثر من دراسة سلسلة من الأرقام في الترتيب المتعاقب. في الواقع، كان الممارسون المبتدئون لتحليل السلاسل الزمنية أكثر اهتماما بأعداد السلاسل الزمنية الفردية أكثر مما كانوا مع استيفاء تلك البيانات. إقحام. في شكل نظريات الاحتمال والتحليل، وجاء في وقت لاحق جدا، كما تم تطوير أنماط واكتشاف الارتباطات. وبمجرد فهمها، تم رسم مختلف المنحنيات والخطوط على طول سلسلة زمنية في محاولة للتنبؤ حيث قد تذهب نقاط البيانات. وهي الآن تعتبر الأساليب الأساسية المستخدمة حاليا من قبل تجار التحليل الفني. تحليل الرسم البياني يمكن ارجاعه إلى القرن ال 18 اليابان، ولكن كيف ومتى تتحرك المتوسطات لأول مرة تطبق على أسعار السوق لا يزال لغزا. ومن المفهوم عموما أن المتوسطات المتحركة البسيطة (سما) كانت تستخدم قبل فترة طويلة من المتوسطات المتحركة الأسية (إما)، لأن المتوسطات المتنقلة إما مبنية على إطار سما، كما أن فهم متواصل سما أكثر سهولة لأغراض التآمر والتتبع. (هل ترغب في قراءة خلفية صغيرة تحقق من المتوسطات المتحركة: ما هي) المتوسط ​​المتحرك البسيط (سما) أصبحت المتوسطات المتحركة البسيطة الطريقة المفضلة لتتبع أسعار السوق لأنها سريعة الحساب وسهلة الفهم. عمل ممارسو السوق في وقت مبكر دون استخدام مقاييس الرسم البياني المتطورة المستخدمة اليوم، لذلك اعتمدوا في المقام الأول على أسعار السوق كمرشدين وحيدين. وقد حسبوا أسعار السوق باليد، ورسموا بيانا لتلك الأسعار للدلالة على الاتجاهات واتجاه السوق. وكانت هذه العملية مملة جدا، ولكن ثبت مربحة للغاية مع تأكيد المزيد من الدراسات. لحساب المتوسط ​​المتحرك البسيط لمدة 10 أيام، ما عليك سوى إضافة أسعار الإغلاق خلال الأيام العشرة الأخيرة وتقسيمها بمقدار 10. ويتم حساب المتوسط ​​المتحرك لمدة 20 يوما بإضافة أسعار الإغلاق خلال فترة 20 يوما وتقسيمها إلى 20، هكذا. هذه الصيغة لا تستند فقط إلى أسعار الإغلاق، ولكن المنتج هو متوسط ​​الأسعار - مجموعة فرعية. ويطلق على المتوسطات المتحركة التحرك لأن مجموعة الأسعار المستخدمة في الحساب تتحرك وفقا للنقطة على الرسم البياني. وهذا يعني أن الأيام القديمة يتم إسقاطها لصالح الأيام الجديدة لسعر الإغلاق، لذا يلزم دائما إجراء حساب جديد يتوافق مع الإطار الزمني للمتوسط ​​المستخدم. لذلك، يتم حساب متوسط ​​10 أيام بإضافة اليوم الجديد وإسقاط اليوم العاشر، ويتم إسقاط اليوم التاسع في اليوم الثاني. (لمزيد من المعلومات حول كيفية استخدام الرسوم البيانية في تداول العملات، راجع أساسيات العرض البياني). المتوسط ​​المتحرك الأسي (إما) لقد تم تحسين المتوسط ​​المتحرك الأسي واستخدامه بشكل أكثر شيوعا منذ الستينيات، وذلك بفضل تجارب الممارسين السابقين مع الكمبيوتر. وسوف تركز إما الجديدة على المزيد من الأسعار الأخيرة بدلا من التركيز على سلسلة طويلة من نقاط البيانات، حيث يتطلب المتوسط ​​المتحرك البسيط. الحالي إما ((السعر (الحالي) - إما إما)) X المضاعف السابق إما. العامل الأكثر أهمية هو ثابت تمهيد أن 2 (1N) حيث N عدد الأيام. إيما 10 أيام (101) 18.8 هذا يعني أن أوزان 10-إما الفترة الأخيرة السعر 18.8، إيما 20 يوما و 20 يوما إما 3.92 الوزن في اليوم الأخير. تعمل إما عن طريق ترجيح الفرق بين سعر الفترات الحالية و إما السابق، وإضافة النتيجة إلى إما السابق. أقصر الفترة، والمزيد من الوزن المطبق على أحدث الأسعار. خطوط تركيب من خلال هذه الحسابات، يتم رسم النقاط، وكشف عن خط المناسب. وتعني خطوط تركيب أعلى أو أدنى من سعر السوق أن جميع المتوسطات المتحركة هي مؤشرات متخلفة. وتستخدم أساسا للاتجاهات التالية. انهم لا يعملون بشكل جيد مع الأسواق مجموعة وفترات الازدحام لأن خطوط المناسب تفشل في دلالة على الاتجاه بسبب عدم وجود ارتفاع أعلى واضح أو أدنى مستوياته الدنيا. بالإضافة إلى ذلك، تميل خطوط المناسب إلى أن تبقى ثابتة دون تلميح الاتجاه. ارتفاع خط المناسب أسفل السوق يدل على فترة طويلة، في حين أن خط السقوط المناسب فوق السوق يعني قصيرة. (للحصول على دليل كامل، اقرأ برنامجنا التعليمي المتوسط ​​المتحرك). إن الغرض من استخدام متوسط ​​متحرك بسيط هو تحديد وقياس الاتجاهات عن طريق تمهيد البيانات باستخدام وسائل عدة مجموعات من الأسعار. يتم رصد اتجاه واستقراء إلى توقعات. الافتراض هو أن تحركات الاتجاه السابقة سوف تستمر. بالنسبة للمتوسط ​​المتحرك البسيط، يمكن العثور على اتجاه طويل الأمد واتباعه أسهل بكثير من المتوسط ​​المتحرك، مع افتراض معقول بأن خط التركيب سيكون أقوى من خط إما بسبب التركيز الأطول على الأسعار المتوسطة. يستخدم إما لالتقاط حركة الاتجاه أقصر، وذلك بسبب التركيز على أحدث الأسعار. وبهذه الطريقة، من المفترض أن تقلل إما من أي تأخيرات في المتوسط ​​المتحرك البسيط، لذلك فإن خط التركيب سيعزز الأسعار أقرب من المتوسط ​​المتحرك البسيط. المشكلة مع إما هي: عرضة للكسر الأسعار، وخاصة خلال الأسواق السريعة وفترات من التقلب. و إما تعمل بشكل جيد حتى كسر الأسعار خط المناسب. خلال أسواق التقلبات المرتفعة، يمكنك التفكير في زيادة طول فترة المتوسط ​​المتحرك. يمكن للمرء أن يتحول حتى من إما إلى سما، منذ سما ينسخ البيانات أفضل بكثير من إما بسبب تركيزه على وسائل طويلة الأجل. مؤشرات التوجھ التالیة: المؤشرات المتخلفة، المتوسطات المتحركة تخدم بشكل جيد كخطوط الدعم والمقاومة. في حالة كسر األسعار دون خط تركيب لمدة 10 أيام في اتجاه تصاعدي، فإن هناك احتماالت بأن االتجاه التصاعدي قد يتراجع، أو على األقل قد يكون السوق متوطنا. في حالة كسر الأسعار فوق المتوسط ​​المتحرك ل 10 أيام في اتجاه هبوطي. فإن الاتجاه قد يتراجع أو يتدعم. في هذه الحالات، استخدم المتوسط ​​المتحرك لمدة 10 و 20 يوما معا، وانتظر خط العشرة أيام للعبور فوق أو أسفل خط 20 يوما. وهذا يحدد الاتجاه القصير الأجل التالي للأسعار. لفترات أطول، مشاهدة المتوسطات المتحركة 100- و 200 يوم للاتجاه على المدى الطويل. على سبيل المثال، باستخدام المتوسطات المتحركة 100 و 200 يوم، إذا كان المتوسط ​​المتحرك 100 يوم يعبر دون المتوسط ​​200 يوم، وهو ما يسمى الصليب الموت. وهو هبوطي جدا للأسعار. ويطلق على المتوسط ​​المتحرك 100 يوم الذي يعبر فوق المتوسط ​​المتحرك لمدة 200 يوم الصليب الذهبي. وهو صاعد جدا للأسعار. لا يهم إذا تم استخدام سما أو إما، لأن كلا من المؤشرات التالية الاتجاه. فقط على المدى القصير أن سما لديها انحرافات طفيفة عن نظيره، إما. الاستنتاج المتوسطات المتحركة هي أساس تحليل الرسم البياني والسلاسل الزمنية. المتوسطات المتحركة البسيطة والمتوسطات المتحركة الأسية الأكثر تعقيدا تساعد على تصور الاتجاه من خلال تمهيد حركة الأسعار. ويشير التحليل الفني أحيانا إلى الفن بدلا من العلم، وكلاهما يستغرق سنوات لإتقان. (تعرف على المزيد في برنامج التحليل الفني). المادة 50 عبارة عن بند للتفاوض والتسوية في معاهدة الاتحاد الأوروبي يحدد الخطوات التي يتعين اتخاذها لأي بلد. بيتا هو مقياس لتقلبات أو مخاطر منهجية لأمن أو محفظة بالمقارنة مع السوق ككل. نوع من الضرائب المفروضة على الأرباح الرأسمالية التي يتكبدها الأفراد والشركات. أرباح رأس المال هي الأرباح التي المستثمر. أمر لشراء ضمان بسعر أو أقل من سعر محدد. يسمح أمر حد الشراء للمتداولين والمستثمرين بتحديده. قاعدة دائرة الإيرادات الداخلية (إرس) تسمح بسحب الأموال بدون رسوم من حساب حساب الاستجابة العاجلة. القاعدة تتطلب ذلك. أول بيع الأسهم من قبل شركة خاصة للجمهور. غالبا ما تصدر مكاتب الملكية الفكرية من قبل الشركات الأصغر حجما والأصغر سنا الذين يبحثون عن. كيفية حساب المتوسطات المتحركة المرجحة في إكسيل باستخدام الأسي تمهيد إكسيلنت داتا أناليسيس فور دوميس، 2nd إديتيون أداة التمدد الأسي في إكسيل بحساب المتوسط ​​المتحرك. ومع ذلك، فإن قيم ترجيح الأسية القيم المدرجة في حسابات المتوسط ​​المتحرك بحيث يكون للقيم الأحدث تأثير أكبر على متوسط ​​الحساب والقيم القديمة لها تأثير أقل. ويتم هذا الترجيح من خلال ثابت التمهيد. لتوضيح كيفية عمل أداة التمدد الأسي، افترض أنك 8217re تبحث مرة أخرى في متوسط ​​معلومات درجة الحرارة اليومية. لحساب المتوسطات المتحركة المرجحة باستخدام تمهيد أسي، اتبع الخطوات التالية: لحساب متوسط ​​متحرك أضعافا مضاعفة، انقر أولا على الزر الأمر 8217s تحليل البيانات. عندما يعرض إكسيل مربع الحوار تحليل البيانات حدد عنصر التمدد الأسي من القائمة ثم انقر فوق موافق. يعرض إكسيل مربع الحوار أسيوننتيال سموثينغ. حدد البيانات. لتحديد البيانات التي تريد حساب متوسط ​​متحرك أضعافا مضاعفة، انقر في مربع النص نطاق الإدخال. ثم حدد نطاق الإدخال، إما عن طريق كتابة عنوان نطاق ورقة عمل أو عن طريق تحديد نطاق ورقة العمل. إذا كان نطاق الإدخال يتضمن تسمية نص لتحديد بياناتك أو وصفها، فحدد مربع الاختيار التصنيفات. توفير ثابت التمهيد. أدخل قيمة ثابت التجانس في مربع النص عامل التخميد. ملف إكسيل هيلب يوحي باستخدام ثابت التمهيد بين 0.2 و 0.3. ويفترض، ومع ذلك، إذا كنت 8217re استخدام هذه الأداة، لديك الأفكار الخاصة بك حول ما ثابت ثابت التجانس هو. (إذا كنت 8217re جاهل حول ثابت تجانس، وربما كنت mustn8217t باستخدام هذه الأداة.) أخبر إكسيل مكان وضع البيانات المتوسط ​​المتحرك ممسود أضعافا مضاعفة. استخدم مربع النص نطاق الإخراج لتحديد نطاق ورقة العمل الذي تريد وضع بيانات المتوسط ​​المتحرك. في مثال ورقة العمل، على سبيل المثال، تضع بيانات المتوسط ​​المتحرك في نطاق ورقة العمل B2: B10. (اختياري) قم بتخطيط البيانات الملساء أضعافا مضاعفة. لرسم البيانات التي تم تمهيدها بشكل متسارع، حدد خانة الاختيار مخطط الإنتاج. (اختياري) تشير إلى أنك تريد حساب معلومات الخطأ القياسية. لحساب الأخطاء القياسية، حدد خانة الاختيار أخطاء قياسية. يضع إكسيل قيم الخطأ القياسية بجوار قيم المتوسط ​​المتحرك الممهدة أضعافا مضاعفة. بعد الانتهاء من تحديد معلومات المتوسط ​​المتحرك التي تريد حسابها والمكان الذي تريد وضعه فيه، انقر فوق موافق. يحسب إكسيل معلومات المتوسط ​​المتحرك. التجديد بواسطة تقنيات التمهيد هذا الموقع هو جزء من عناصر جافا سكريبت E-لابس للتعلم لاتخاذ القرارات. يتم تصنيف جافا سكريبت أخرى في هذه السلسلة ضمن مجالات مختلفة من التطبيقات في قسم مينو في هذه الصفحة. سلسلة زمنية هي سلسلة من الملاحظات التي يتم ترتيبها في الوقت المناسب. ومن العوامل المتأصلة في جمع البيانات المأخوذة على مر الزمن شكل من أشكال الاختلاف العشوائي. هناك طرق للحد من إلغاء التأثير بسبب الاختلاف العشوائي. التقنيات المستخدمة على نطاق واسع هي تمهيد. وتكشف هذه التقنيات، عندما تطبق بشكل صحيح، عن الاتجاهات الكامنة بشكل أوضح. أدخل السلاسل الزمنية بالصفوف في التسلسل، بدءا من الزاوية العلوية اليسرى، والمعلمة (المعلمات)، ثم انقر على الزر حساب للحصول على التنبؤ قبل فترة واحدة. لا يتم تضمين صناديق فارغة في الحسابات ولكن الأصفار هي. في إدخال البيانات الخاصة بك للانتقال من خلية إلى خلية في مصفوفة البيانات استخدام مفتاح تاب لا السهم أو إدخال مفاتيح. ملامح السلاسل الزمنية، والتي يمكن كشفها من خلال فحص الرسم البياني. مع القيم المتوقعة، والسلوك المتبقي، والنمذجة حالة التنبؤ. المتوسطات المتحركة: تعد المتوسطات المتحركة من بين أكثر التقنيات شعبية في المعالجة المسبقة للمسلسلات الزمنية. وهي تستخدم لتصفية الضوضاء البيضاء العشوائية من البيانات، لجعل السلاسل الزمنية أكثر سلاسة أو حتى للتأكيد على بعض العناصر الإعلامية الواردة في السلاسل الزمنية. الأسي تجانس: هذا هو مخطط شعبية جدا لإنتاج سلسة سلسلة الوقت. في حين أن المتوسطات المتحركة يتم ترجيح الملاحظات السابقة بالتساوي، فإن التسييل الأسي يعين الأوزان المتناقصة بشكل كبير مع تقدم الملاحظة. وبعبارة أخرى، تعطي الملاحظات الأخيرة وزنا أكبر نسبيا في التنبؤ من الملاحظات القديمة. ضعف الأسي تجانس أفضل في التعامل مع الاتجاهات. الثلاثي الأسي تجانس أفضل في التعامل مع اتجاهات القطع المكافئ. متوسط ​​متحرك مرجح أسي مع ثابت التمهيد a. يقابل تقريبا متوسط ​​متحرك بسيط للطول (أي الفترة) n، حيث تكون a و n مرتبطة بما يلي: 2 (n1) أو n (2 - a) a. وهكذا، على سبيل المثال، فإن المتوسط ​​المتحرك المرجح ألسيا مع ثابت التمهيد يساوي 0.1 من شأنه أن يتوافق تقريبا إلى 19 المتوسط ​​المتحرك اليوم. والمتوسط ​​المتحرك البسيط لمدة 40 يوما من شأنه أن يتوافق تقريبا مع متوسط ​​متحرك مرجح أسي مع ثابت ثابت يساوي 0.04878. هولتس الخطي الأسي تمهيد: لنفترض أن السلسلة الزمنية غير الموسمية ولكن لا عرض الاتجاه. طريقة هولتس تقدر كل من المستوى الحالي والاتجاه الحالي. لاحظ أن المتوسط ​​المتحرك البسيط هو حالة خاصة للتلطيف الأسي عن طريق تحديد فترة المتوسط ​​المتحرك إلى الجزء الصحيح من ألفا (ألفا) ألفا. بالنسبة لمعظم بيانات الأعمال تكون معلمة ألفا أصغر من 0.40 فعالة في كثير من الأحيان. ومع ذلك، يمكن للمرء إجراء بحث شبكة من مساحة المعلمة، مع 0.1 إلى 0.9، مع زيادات من 0.1. ثم أفضل ألفا لديه أصغر خطأ المطلق يعني (خطأ ما). كيفية مقارنة عدة طرق للتجانس: على الرغم من وجود مؤشرات رقمية لتقييم دقة تقنية التنبؤ، فإن النهج الأكثر انتشارا هو استخدام مقارنة مرئية لعدة تنبؤات لتقييم دقتها والاختيار من بين مختلف أساليب التنبؤ. في هذا النهج، يجب على المرء أن مؤامرة (باستخدام، على سبيل المثال إكسيل) على نفس الرسم البياني القيم الأصلية لمتغير سلسلة زمنية والقيم المتوقعة من عدة طرق التنبؤ المختلفة، مما يسهل المقارنة البصرية. قد ترغب في استخدام التوقعات السابقة من قبل تقنيات تجانس جافاسكريبت للحصول على القيم السابقة التنبؤ على أساس تقنيات تمهيد التي تستخدم معلمة واحدة فقط. هولت، وطرق الشتاء تستخدم اثنين وثلاثة معلمات، على التوالي، وبالتالي فإنه ليس من السهل مهمة لتحديد الأمثل، أو حتى بالقرب من القيم المثلى من قبل التجربة والأخطاء للمعلمات. ويؤكد التمهيد الأسي المفرد على المنظور القصير المدى الذي يحدد المستوى للمراقبة الأخيرة ويستند إلى شرط عدم وجود اتجاه. إن الانحدار الخطي، الذي يناسب خط المربعات الصغرى على البيانات التاريخية (أو البيانات التاريخية المحولة)، يمثل المدى الطويل، الذي يشترط الاتجاه الأساسي. هولتس الخطي الأسي تجانس يلتقط المعلومات حول الاتجاه الأخير. والمعلمات في نموذج هولتس هي معلمة المستويات التي ينبغي أن تنخفض عندما يكون مقدار تغير البيانات كبيرا، وينبغي زيادة معلمة الاتجاهات إذا كان اتجاه الاتجاه الأخير مدعوما بالعوامل المسببة لبعض العوامل. التنبؤ على المدى القصير: لاحظ أن كل جافاسكريبت في هذه الصفحة يوفر توقعات خطوة واحدة. للحصول على توقعات من خطوتين. ببساطة إضافة القيمة المتوقعة إلى نهاية لك البيانات سلسلة الوقت ثم انقر على نفس زر حساب. يمكنك تكرار هذه العملية لبضع مرات من أجل الحصول على التوقعات على المدى القصير اللازمة. تم توضيح تنعيم إكسبوننتيال. نسخ حقوق الطبع والنشر. المحتوى على إنفنتوريوبس محمي بموجب حقوق الطبع والنشر وغير متاح لإعادة النشر. عندما يواجه الناس لأول مرة مصطلح الأسي التمهيد قد يعتقدون أن يبدو وكأنه جهنم الكثير من التجانس. مهما كان التمهيد. ثم تبدأ في تصور حساب رياضي معقد من المرجح أن يتطلب درجة في الرياضيات لفهم، ونأمل أن يكون هناك المدمج في وظيفة إكسيل المتاحة إذا كانوا في أي وقت الحاجة إلى القيام بذلك. واقع التجانس الأسي هو أقل بكثير دراماتيكية وأقل بكثير صدمة. والحقيقة هي، تمهيد الأسي هو حساب بسيط جدا أن ينجز مهمة بسيطة إلى حد ما. انها مجرد اسم معقد لأن ما يحدث من الناحية الفنية نتيجة لهذه العملية الحسابية البسيطة هو في الواقع معقدة قليلا. لفهم التجانس الأسي، فإنه يساعد على البدء مع المفهوم العام للتجانس واثنين من الأساليب الشائعة الأخرى المستخدمة لتحقيق التجانس. ما هو التمهيد تجانس هو عملية إحصائية شائعة جدا. في الواقع، نواجه بانتظام البيانات ممهدة في أشكال مختلفة في حياتنا يوما بعد يوم. في أي وقت تستخدم فيه متوسطا لوصف شيء ما، فإنك تستخدم رقم سلس. إذا كنت تفكر في لماذا تستخدم متوسط ​​لوصف شيء ما، سوف تفهم بسرعة مفهوم التجانس. على سبيل المثال، شهدنا فقط أحر الشتاء في السجل. كيف يمكننا أن نقدر هذا جيدا نبدأ مع مجموعات من درجات الحرارة العالية والمنخفضة اليومية للفترة التي نسميها الشتاء لكل سنة في التاريخ المسجل. ولكن هذا يترك لنا مجموعة من الأرقام التي تقفز حول قليلا (وليس مثل كل يوم هذا الشتاء كان أكثر دفئا من الأيام المقابلة من جميع السنوات السابقة). نحن بحاجة إلى عدد الذي يزيل كل هذا القفز من حول البيانات حتى نتمكن من مقارنة أكثر سهولة فصل الشتاء إلى التالي. إزالة القفز حول في البيانات يسمى التنعيم، وفي هذه الحالة يمكننا فقط استخدام متوسط ​​بسيط لإنجاز التجانس. في التنبؤ الطلب، ونحن نستخدم تمهيد لإزالة الاختلاف العشوائي (الضوضاء) من الطلب التاريخي لدينا. وهذا يتيح لنا تحديد أنماط الطلب بشكل أفضل (في المقام الأول الاتجاه والموسمية) ومستويات الطلب التي يمكن استخدامها لتقدير الطلب في المستقبل. الضجيج في الطلب هو نفس المفهوم مثل القفز اليومي حول بيانات درجة الحرارة. ليس من المستغرب أن الطريقة الأكثر شيوعا الناس إزالة الضوضاء من تاريخ الطلب هو استخدام المتوسط ​​العادي على وجه التحديد، وهو المتوسط ​​المتحرك. المتوسط ​​المتحرك يستخدم فقط عدد محدد مسبقا من الفترات لحساب المتوسط، وتلك الفترات تتحرك بمرور الوقت. على سبيل المثال، إذا كان استخدام إم المتوسط ​​المتحرك لمدة 4 أشهر، واليوم هو 1 مايو، إم باستخدام متوسط ​​الطلب الذي حدث في يناير وفبراير ومارس وأبريل. في الأول من حزيران (يونيو)، سأستخدم الطلب من شباط (فبراير) ومارس وأبريل ومايو (أيار). المتوسط ​​المتحرك الموزون. عند استخدام متوسط ​​نقوم بتطبيق نفس الأهمية (الوزن) على كل قيمة في مجموعة البيانات. في المتوسط ​​المتحرك لمدة 4 أشهر، يمثل كل شهر 25 من المتوسط ​​المتحرك. عند استخدام التاريخ الطلب على الطلب الطلب في المستقبل (وخاصة الاتجاه المستقبلي)، منطقي أن يأتي إلى الاستنتاج الذي تريد المزيد من التاريخ الحديث أن يكون لها تأثير أكبر على توقعاتك. يمكننا تكييف حسابنا المتوسط ​​المتحرك لتطبيق مختلف الأوزان لكل فترة للحصول على النتائج المرجوة. نحن نعبر عن هذه الأوزان كنسب مئوية، ويجب أن يصل مجموع جميع الأوزان لجميع الفترات إلى 100. ولذلك، إذا قررنا أن نطبق 35 كوزن لأقرب فترة في المتوسط ​​المتحرك المرجح لمدة 4 أشهر، يمكننا طرح 35 من 100 لإيجاد لدينا 65 المتبقية لتقسيم على مدى 3 فترات أخرى. على سبيل المثال، قد ينتهي بنا الأمر بترجيح 15 و 20 و 30 و 35 على التوالي للأشهر الأربعة (15 20 30 35 100). تجانس الأسي. إذا عدنا إلى مفهوم تطبيق الوزن على آخر فترة (مثل 35 في المثال السابق) ونشر الوزن المتبقي (محسوبا بطرح أحدث وزن فترة 35 من 100 للحصول على 65)، لدينا اللبنات الأساسية لدينا حساب الأسي تمهيد. وتعرف مدخلات التحكم في حساب التجانس الأسي كعامل التمهيد (الذي يطلق عليه أيضا ثابت التجانس). وهي تمثل أساسا الترجيح المطبق على أحدث فترات الطلب. لذلك، حيث استخدمنا 35 كوزن لآخر فترة في حساب المتوسط ​​المتحرك المرجح، يمكننا أيضا اختيار استخدام 35 كعامل تمهيد في حساب التجانس الأسي للحصول على تأثير مماثل. الفرق مع حساب تمهيد الأسي هو أنه بدلا من أن علينا أيضا معرفة مقدار الوزن لتطبيقه على كل فترة سابقة، يتم استخدام عامل التمهيد للقيام بذلك تلقائيا. حتى يأتي هنا الجزء الأسي. إذا استخدمنا 35 كعامل تمهيد، فإن ترجيح آخر طلب للفترات سيكون 35. ترجيح آخر طلب للفترات الأخيرة (الفترة قبل آخر) سيكون 65 من 35 (65 يأتي من طرح 35 من 100). وهذا يعادل 22.75 الترجيح لتلك الفترة إذا كنت تفعل الرياضيات. وسيكون الطلب التالي للفترات الأخيرة 65 من 65 من 35، وهو ما يعادل 14.79. وستتم ترجيح الفترة السابقة لذلك على أنها 65 من 65 من 65 من 35، أي ما يعادل 9.61، وما إلى ذلك. وهذا يسير مرة أخرى من خلال كل ما تبذلونه من فترات السابقة على طول الطريق إلى بداية الوقت (أو النقطة التي كنت بدأت باستخدام تمهيد الأسي لهذا البند معين). ربما كنت تفكر في أن تبدو وكأنها الكثير من الرياضيات. ولكن جمال حساب التجانس الأسي هو أنه بدلا من الاضطرار إلى إعادة حساب مقابل كل فترة سابقة في كل مرة تحصل على طلب فترات جديدة، يمكنك ببساطة استخدام الإخراج من حساب تمهيد الأسي من الفترة السابقة لتمثيل جميع الفترات السابقة. هل أنت الخلط حتى هذا وسوف تجعل أكثر منطقية عندما ننظر إلى الحساب الفعلي عادة نشير إلى إخراج حساب تمهيد الأسي كما توقعات الفترة المقبلة. في الواقع، فإن التوقعات النهائية تحتاج إلى المزيد من العمل، ولكن لأغراض هذا الحساب المحدد، وسوف نشير إليها على أنها التوقعات. حساب التجانس الأسي هو كما يلي: طلب الفترات الأخيرة مضروبا في عامل التمهيد. بلوس أحدث الفترات المتوقعة مضروبة في (واحد ناقص عامل التجانس). D أحدث فترات الطلب S عامل التمهيد ممثلة في شكل عشري (حتى 35 سيتم تمثيلها على أنها 0.35). F أحدث الفترات المتوقعة (ناتج حساب التجانس من الفترة السابقة). أو (على افتراض عامل تمهيد 0.35) (D 0.35) (F 0.65) أنها لا تحصل على أبسط من ذلك بكثير. كما ترون، كل ما نحتاجه من أجل مدخلات البيانات هنا هو أحدث طلب لفترات وأحدث الفترات المتوقعة. نطبق عامل التمهيد (الترجيح) على أحدث الفترات التي تتطلب نفس الطريقة التي نفعلها في حساب المتوسط ​​المتحرك المرجح. ثم نطبق الترجيح المتبقي (1 ناقص عامل التجانس) إلى أحدث الفترات المتوقعة. وبما أن أحدث الفترات المتوقعة تم إنشاؤها بناء على طلب الفترات السابقة وتوقعات الفترات السابقة التي استندت إلى الطلب على الفترة السابقة لذلك والتنبؤ بالفترة السابقة لذلك والذي استند إلى الطلب على الفترة السابقة وتوقعات الفترة السابقة لذلك، التي استندت إلى الفترة السابقة لذلك. حسنا، يمكنك أن ترى كيف يتم تمثيل جميع فترات الفترات السابقة الطلب في الحساب دون العودة فعلا وإعادة حساب أي شيء. وهذا ما دفع شعبية الأولي من التمهيد الأسي. لم يكن ذلك لأنه كان أفضل من التمهيد من المتوسط ​​المتحرك المرجح، كان ذلك لأنه كان من الأسهل لحساب في برنامج الكمبيوتر. ولأنك لم تحتاج إلى التفكير في الترجيح لإعطاء الفترات السابقة أو عدد الفترات السابقة التي ستستخدمها، كما تفعل في المتوسط ​​المتحرك المرجح. و، لأنه بدا فقط برودة من المتوسط ​​المتحرك المرجح. في الواقع، يمكن القول بأن المتوسط ​​المتحرك المرجح يوفر مرونة أكبر لأن لديك المزيد من السيطرة على ترجيح الفترات السابقة. الواقع هو إما من هذه يمكن أن توفر نتائج محترمة، فلماذا لا تذهب مع أسهل وأكثر برودة السبر. التمدد الأسي في إكسيل يتيح رؤية كيفية ظهور ذلك في جدول بيانات يحتوي على بيانات حقيقية. نسخ حقوق الطبع والنشر. المحتوى على إنفنتوريوبس محمي بموجب حقوق الطبع والنشر وغير متاح لإعادة النشر. في الشكل 1A، لدينا جدول إكسل مع 11 أسبوعا من الطلب، وتوقعات أملس أضعافا محسوبة من هذا الطلب. إيف استخدم عامل تمهيد 25 (0.25 في الخلية C1). الخلية النشطة الحالية هي الخلية M4 التي تحتوي على توقعات للأسبوع 12. يمكنك أن ترى في شريط الصيغة، والصيغة هي (L3C1) (L4 (1-C1)). لذا فإن المدخلات المباشرة الوحيدة لهذا الحساب هي الطلب على الفترات السابقة (الخلية L3)، وتوقعات الفترات السابقة (الخلية L4)، وعامل التجانس (الخلية C1، المبين كمرجع الخلية المطلق C1). عندما نبدأ حساب تمهيد الأسي، نحن بحاجة إلى سد قيمة يدويا للتوقعات 1ST. حتى في الخلية B4، بدلا من الصيغة، ونحن فقط كتب في الطلب من نفس الفترة من التوقعات. في الخلية C4 لدينا لدينا 1 الأسي حساب تمهيد (B3C1) (B4 (1-C1)). يمكننا بعد ذلك نسخ الخلية C4 ولصقه في الخلايا من D4 إلى M4 لملء بقية الخلايا توقعاتنا. يمكنك الآن انقر نقرا مزدوجا فوق على أي خلية توقعات لنرى أنه يقوم على الخلية السابقة الفترات المتوقعة وخلايا الطلب فترات السابقة. لذلك كل حساب تمهيد الأسي اللاحقة يرث الإخراج من حساب التجانس الأسي السابق. ولكيف يتم تمثيل كل طلب فترات سابقة في حساب الفترات الأخيرة على الرغم من أن هذا الحساب لا يشير مباشرة إلى تلك الفترات السابقة. إذا كنت ترغب في الحصول على الهوى، يمكنك استخدام إكسيلز تتبع السوابق وظيفة. للقيام بذلك، انقر فوق الخلية M4، ثم على شريط الأدوات الشريط (إكسيل 2007 أو 2010) انقر فوق علامة التبويب الصيغ، ثم انقر فوق تتبع السوابق. فإنه سيتم رسم خطوط الموصل إلى المستوى الأول من السوابق، ولكن إذا كنت الاستمرار في النقر تتبع السوابق فإنه سيتم رسم خطوط موصل لجميع الفترات السابقة لتظهر لك العلاقات الموروثة. الآن دعونا نرى ما تمهيد الأسي لم بالنسبة لنا. ويبين الشكل 1B مخطط خطي لطلبنا والتوقعات. أنت ترى كيف أن التوقعات الملساء أضعافا يزيل معظم الخدش (القفز حول) من الطلب الأسبوعي، ولكن لا يزال يدير لمتابعة ما يبدو أن الاتجاه التصاعدي في الطلب. ويلاحظ أيضا أن خط التنبؤ ممهدة يميل إلى أن يكون أقل من خط الطلب. هذا هو المعروف باسم تأخر الاتجاه و هو تأثير جانبي لعملية تمهيد. في أي وقت كنت تستخدم تمهيد عندما يكون الاتجاه الحالي توقعاتك سوف تتخلف عن الاتجاه. هذا صحيح لأي تقنية تمهيد. في الواقع، إذا كان لنا أن نستمر في جدول البيانات هذا وبدء إدخال أرقام الطلب المنخفض (مما يجعل الاتجاه الهابط) سترى انخفاض خط الطلب، وخط الاتجاه التحرك فوقه قبل البدء في اتباع الاتجاه النزولي. ولهذا السبب سبق أن ذكرت الإخراج من حساب تمهيد الأسي الذي نسميه توقعات، لا يزال يحتاج الى مزيد من العمل. هناك الكثير للتنبؤ من مجرد تمهيد المطبات في الطلب. نحن بحاجة إلى إجراء تعديلات إضافية لأشياء مثل تأخر الاتجاه، والموسمية، والأحداث المعروفة التي قد تؤثر الطلب، وما إلى ذلك ولكن كل ما هو أبعد من نطاق هذه المادة. ومن المحتمل أن تتعامل أيضا مع مصطلحات مثل التجانس المزدوج الأسي والتجانس الثلاثي الأسي. هذه المصطلحات هي مضللة بعض الشيء لأنك لا إعادة تمهيد الطلب عدة مرات (هل يمكن إذا كنت تريد، ولكن هذا ليس نقطة هنا). وتمثل هذه المصطلحات استخدام التمهيد الأسي للعناصر الإضافية للتنبؤات. حتى مع تمهيد الأسي بسيط، كنت تمهيد الطلب قاعدة، ولكن مع تجانس مزدوج الأسي كنت تمهيد الطلب قاعدة بالإضافة إلى الاتجاه، ومع تمهيد الثلاثي الأسي كنت تمهيد الطلب الأساسي بالإضافة إلى الاتجاه بالإضافة إلى الموسمية. السؤال الآخر الأكثر شيوعا حول تمهيد الأسي هو أين يمكنني الحصول على عامل تجانس بلدي ليس هناك إجابة السحرية هنا، تحتاج إلى اختبار مختلف العوامل تمهيد مع بيانات الطلب الخاص بك لمعرفة ما يحصل لك أفضل النتائج. هناك حسابات التي يمكن تلقائيا تعيين (وتغيير) عامل تمهيد. هذه تقع تحت مصطلح التجانس التكيف، ولكن عليك أن تكون حذرا معهم. ببساطة لا يوجد إجابة كاملة ويجب أن لا تنفذ بشكل أعمى أي حساب دون اختبار شامل وتطوير فهم دقيق لما يفعله هذا الحساب. يجب عليك أيضا تشغيل سيناريوهات ماذا لو لرؤية كيف تتفاعل هذه الحسابات مع التغييرات التي قد لا توجد حاليا في بيانات الطلب التي تستخدمها للاختبار. مثال البيانات الذي استخدمته سابقا هو مثال جيد جدا على الوضع الذي تحتاج فيه حقا لاختبار بعض السيناريوهات الأخرى. ويظهر مثال البيانات المعين هذا اتجاها تصاعديا متسقا إلى حد ما. فالكثير من الشركات الكبيرة التي لديها برامج تنبؤات باهظة الثمن حصلت على مشاكل كبيرة في الماضي غير البعيد عندما لم تكن إعدادات البرامج التي تم تعديلها لاقتصاد متنام تتفاعل بشكل جيد عندما بدأ الاقتصاد في الركود أو الانكماش. أشياء مثل هذا يحدث عندما كنت لا تفهم ما الحسابات الخاصة بك (البرمجيات) هو في الواقع. إذا فهموا نظام التنبؤ بهم، كانوا قد عرفوا أنهم بحاجة إلى القفز في وتغيير شيء عندما كانت هناك تغييرات مفاجئة مفاجئة في أعمالهم. لذلك هناك يكون لديك أساسيات الأسس تمهيد شرح. تريد أن تعرف المزيد عن استخدام التجانس الأسي في التنبؤ الفعلي، تحقق من كتابي شرح إدارة المخزون. نسخ حقوق الطبع والنشر. المحتوى على إنفنتوريوبس محمي بموجب حقوق الطبع والنشر وغير متاح لإعادة النشر. ديف بياسيكي. هو أونيروبيراتور من جرد العمليات استشارات ليك. وهي شركة استشارية تقدم الخدمات المتعلقة بإدارة المخزون، ومناولة المواد، وعمليات المستودعات. لديه أكثر من 25 عاما من الخبرة في إدارة العمليات ويمكن الوصول إليه من خلال موقعه على الانترنت (إنفنتوريوبس)، حيث يحافظ على معلومات إضافية ذات صلة. أعمالي

No comments:

Post a Comment